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Abstract
During a course of fractionated radiation therapy and between the fractions
the tissues of the human body may move relative to some reference location
in which the radiation therapy was planned. This has been known for
over a century and simple ‘coping mechanisms’ (margins) have been used
to approximately compensate. Since the introduction of highly accurate
conformal radiation therapy and intensity-modulated radiation therapy (IMRT)
attention has focused strongly in the last few years on understanding and
compensating more appropriately for these motions. Thus, unlike most of the
reviews in this special 50th anniversary issue which look back over decades
of development, this one looks back at most within just the past decade and
reviews the current situation. There is still much more work to be done and
many of the techniques reviewed are themselves not yet implemented widely
in the clinic.

1. Introduction

The use of intensity-modulated radiation therapy (IMRT) to sculpt the high-dose region around
the target and to spare organs at risk is now well established and many theoretical, experimental
and clinical studies have been published (see reviews by Webb (1993, 1997, 2000, 2004),
Palta and Mackie (2003)). No-one doubts that better dose distributions can be formed through
IMRT but the clinical efficacy is yet to be uncontroversially demonstrated. Meanwhile,
attention has moved on to addressing the question of understanding the motion of organs and
tumours and compensating for this at treatment. This advance is really a return to re-state
that the most important aspect of radiation therapy is locating the target and ensuring that
it is where it is supposed to be at the time of treatment. Identifying the target location at
planning depends on multimodality imaging and is not the subject of this review. This review
concerns ensuring that the target is geometrically linked correctly to the beams throughout
irradiation.
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Whilst this topic is newer than the development of IMRT, there is nevertheless a large
literature and this review attempts to distil the essence of this and to concentrate mostly on the
more recent developments. A very lengthy review up to the summer of 2004 already appeared
in Webb (2004), although here that material is again distilled for completeness and updated.
This paper is an ‘odd man out’ in this anniversary issue. Whereas others can take a long
retrospective view, this is not possible for this topic which is extremely new. Indeed very little
has yet reached clinical practice.

There is some circularity in this area. Logically, the first task would be to establish the
magnitude of the motion effects and secondly to devise ways to compensate for them. However,
some of the measurements have only become possible following intervention strategies that
were devised more with compensation for motion in mind. For example the implantation of
radio-opaque markers in organs, continuously viewed by fluoroscopic x-rays, clearly suggests
an approach to feeding back the knowledge of motion for compensation. Yet equally, in turn,
it generates further knowledge of the scale of the problem.

2. PTV or CTV conformality

There is nothing new about organ motion. Treatment planners have always known that
organs move and have compensated for this by expanding the clinical target volume (CTV)
by a margin to form the planning target volume (PTV) to which treatment is conformed.
By adequately irradiating the PTV, in which the CTV moves around from fraction to fraction
(interfraction motion) and during fractions (intrafraction motion), the irradiation of the tumour
is assured. For some time it was thought that this construct would fail for IMRT but Bortfeld
et al (2002b) showed that, provided each fraction is dephased relative to the others (which will
occur naturally), the exact same concept holds for IMRT. So, if one is content with doing no
better than in the past, one can stop at this point and stay with margins although even this does
not cope with systematic error. Recently there have been many papers explaining formulae
for such margin generation (e.g. Van Herk (2004)).

Conversely, this is too unchallenging a goal. We want to irradiate only the CTV, since
that is where the disease resides. To do this we need to know the inter- and intra-fraction
motion of the CTV and then alter the irradiation technique to cope by either (i) natural or
assisted breath-hold to gate the treatment to a small range of motion of the CTV, or (ii) track
the motion and track the collimation (e.g. the MLC leaves) proportionately. The first has a
lower than 100% duty cycle; the second has a 100% duty cycle.

Not everyone agrees that all patients need assessment and compensation for motion and
an interesting debate by Herman et al (2003) reviews the arguments on each side.

Most published studies could be catalogued (i) by inter- versus intra-fraction motion,
(ii) by method of determining motion, (iii) by method of intervening to compensate for motion
and (iv) by organ studied. However, given the many varied and disconnected approaches to
studying organ motion, there are many ways the studies and papers could be organized. I have
chosen just one way as follows.

3. General observations

The most comprehensive publication on organ motion and its management by Langen and
Jones (2001) collated tables of studies for liver, diaphragm, kidneys, pancreas, lung, bladder,
rectum and prostate from 66 studies. The deduction of generalities was hampered by many
different experimental conditions and readers should refer to these tables for details.
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4. Optical imaging for motion correction

Tomé et al (2000, 2001) used a biteplate attached to the patient’s maxillary dentition and
attached to which was an array of passive infrared markers viewed externally. As the patient
moved, the information was fed back to a compensating stereotactic delivery system. The
BrainLab ExacTrac optical-navigation-and-guidance system has been used by Alheit et al
(2000), Hagekyriakou et al (2000), Verellen et al (2000) and Kim et al (2004) for imaging
external infrared markers, said to be correlated to motion of the prostate and head-and-neck
tumours. Wagman et al (2001) used the Varian real-time position-monitor (RPM) passive-
infrared-marker system to both acquire gated CT data and to gate treatment for the liver.
George et al (2003) used the RPM system to image the breast and showed that the CTV
dose inhomogeneity increased with amplitude of respiratory motion. This study also showed
that, averaging over a full course of fractions, the motion-adjusted distributions well matched
the planned distributions for the PTV. Skin-mounted infrared markers have been used by
Lyatskaya et al (2002) to monitor breast movement. Optical stereophotogrammetry has been
used by Macpherson et al (2002). Moore and Graham (2000) also created interference patterns
of structured light and an optical stereophotogrammetry device to create a computer image
of the patient surface which could be ‘docked’ to a reference shell to indicate appropriate
translations to accommodate interfraction motion.

5. X-ray imaging for motion assessment and correction

The most common, though invasive, way to measure motion is to implant fiducial markers in
an organ and observe their motion with fluoroscopy. Murphy et al (2003) built up a picture
of intrafraction tumour movement this way for 250 cranial, 23 spinal, 9 lung and 3 pancreas
patients. Gradual intrafraction drifts were observed; mean data are of no practical interest and
individual motion patterns show both rhythmic and irregular (outlier) unpredictable motions.

5.1. Prostate

Balter et al (2000) showed that, for the prostate, craniocaudal motion was largest and was
much lower for supine setup than prone setup and even lower if a false table top allowed
the pelvis to fall posteriorly. Often-quoted studies are those of Kitamura et al (2002) who
monitored 10 patients each 5 times with fluoroscopic imaging of gold markers at 30 Hz to
create pictorial trajectories of the targets with conclusions in agreement with those of Balter
et al (2000). Nederveen et al (2002) used portal imaging to assess prostate marker motion
during a fraction every 0.4 s. Ten patients with 251 fractions were studied. Mean motions
were small but outlier maximum motions were of the order 9 mm. Spitters-Post et al (2002)
and Visser et al (2002) showed prostate marker movement relative to bony landmarks.

Highlighting one specific study, Aubrey et al (2004) have implanted two or three fiducial
markers in the prostates of 18 patients and imaged them with CT (to provide baseline
position information) and subsequently with online portal imaging. Data were acquired on the
translation of the centre of mass and on the rotation of the prostate. Where possible the patients
were instructed to achieve a full bladder and empty rectum to try to achieve as reproducible
a position as possible. Interfraction variations were assessed from the data at each fraction
compared with baseline and intrafraction variations from before-and-after therapy imaging
at any specific fraction. Note this is not the same as measuring the prostate position during
irradiation. (This is more grammatically correct intrafraction motion measurement and the
other use of the term is somewhat confusing.)
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The overall standard deviation of intrafraction translations was 0.8 mm L-R, 1.1 mm
S-I and 1.6 mm A-P. Graphs of the distributions showed that, whilst mean intrafraction
displacements were almost identically zero, the distributions were quite broad with outliers
greater than 5 mm. The authors commented that the intrafraction movie loops of Padhani et al
(1999) showed large motions but over short times, completely different data to that acquired
in this study.

The standard deviation of interfraction rotations was 8.0◦ about the L-R axis, 3.6◦ S-I
and 2.9◦ A-P. Again, mean rotations over the population were close to zero but large outliers
arose. The standard deviation of intrafraction rotations was 5.8◦ about the L-R axis, 3.8◦ S-I
and 2.0◦ A-P. Again mean rotations over the population were close to zero but large outliers
arose. They deduced that intrafraction rotation was less important than interfraction rotation
and these latter were larger than reported in other previous studies.

5.2. Lung

Shimizu et al (2000, 2001) have used the same system as Kitamura et al (2002) to record
the movement of implanted lung-tumour markers at 30 Hz showing that, with free breathing,
markers moved up to 16 mm. The knowledge was used to gate an accelerator and reduce this
excursion during irradiation to 5 mm. Seppenwoolde et al (2001, 2002) similarly plotted lung-
tumour marker trajectories demonstrating that dwell-time was greater at maximum exhalation
than inspiration and, again, gating an accelerator with the data (see section 8.3).

5.3. Relation between internal marker motion and external marker motion

Kini et al (2001) studied 150 fluoroscopy movies for 6 patients for whom there was also
simultaneous monitoring of the chest wall through camera-based infrared markers. The two
motions were linked with a phase shift in time and then, using this relationship, the internal
motion, predicted from the external motion, was shown to agree to within 3 mm with the
actual internal motion. Vedam et al (2001, 2003a, 2003b) used a similar correlation to predict
the diaphragm motion from a measurement of external markers using the Varian RPM system
at 30 Hz.

Gierga et al (2005) studied the relationship between the motions of internal (clip) markers
implanted in liver tumours and the motion of surface-mounted infrared markers. Respiratory
gating on external markers relies on a good correlation between these two motions. Such a
correlation was generally observed but there was often a very large ratio between the excursion
of the tumour marker and the excursion of an external marker, this ratio depending on patient
and on the locations of the markers. Hence one cannot simply assume that the external
excursion equals the internal excursion. Also, worryingly, the location of an internal marker
could have as much as 9 mm variation for the same location of external marker.

This topic is considered in section 9 in relation to the Cyberknife.

5.4. Mathematics of breathing

Patients breath asymmetrically and a much-used representation, determined from x-ray
fluoroscopy, is that from Lujan et al (2003), a form of which is

z(t) = z0 + b cos2n(πt/τ + π/2)

for motion in a z-direction where t = time, z0 = exhale position, b = peak-to-peak amplitude,
τ = breathing period and 2n = shape parameter. As 2n increases, more time is spent at end
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expiration. A value of 2n = 6 has often been used but extensive data fitting by George et al
(2005) showed 2n = 4 modelled better but even considered cos to be adequate. If a static dose
distribution is convolved with such a function it gives an approximate indication of the motion
degradation. Sadly, real breathing can be more erratic with changes in amplitude, period and
shape and occasional wild excursions during the breathing cycle (Seppenwoolde et al 2002,
Nøttrup et al 2005). This must be remembered when reading studies and motion-correction
techniques based on this equation.

5.4.1. Intrafraction breathing margins. Engelsman et al (2005) have also demonstrated
that patients’ breathing often changes throughout the period of irradiation in both amplitude,
baseline shift and shape. They took fluoroscopic data from Hokkaido University and, for
40 patients, plotted the probability density function (p.d.f.) of breathing. (Similar p.d.f. data
were generated by Dı́ez et al (2004).) Sometimes this could be fitted by the Lujan equation
but in 90% of cases the data could be as well fitted with a Gaussian function specified by
a median peak-to-peak amplitude and a standard deviation which was 0.4 times this median
amplitude. They then modelled the breathing degradation of a 1D dose profile by convolving
the p.d.f. with the 1D profile and showed the extra margin that was required to restore the
target coverage to that in the unbreathing situation, in terms of either the median amplitude or
the standard deviation of the p.d.f. The extra margin was not linear with median amplitude
and standard deviation. Figure 1 in the review shows the increasing gradient of the curve
of required extra displacement versus these parameters. Alternatively, if breathing-control
manoeuvres reduce the amplitude of breathing, the data from the study showed the reduction
in margin which can be permitted under ideal conditions. As far as intrafraction breathing is
concerned it was concluded that, being random, the error indicated by this standard deviation
could be added in quadrature to other random errors (for patient positioning etc) to indicate the
overall margin to convert from CTV to PTV. Results were shown to be in line with predictions
of formulae from Van Herk (2004). Also for patients with a peak-to-peak amplitude of less
than 10 mm, control of breathing only allows a small reduction in safety margins.

6. Ultrasound location of tumours

The main commercial apparatus for ultrasound location of tumours is the NOMOS beam
acquisition and targeting device (the BAT) which has been used mostly to give a pre-treatment
interfraction measurement of the prostate. The contour of the prostate is then extracted
(not always easily) and correlated with the contour from the treatment-planning CT slice.
Misregistration then gives the docking translations required. Clearly this can only be correct
for rigid-body shifts. Sometimes one reads that it can make intrafraction measurements
(Huang et al 2002) but this is a misnomer and refers to a comparison of before- and after-
treatment fraction. There have been many published studies including those by Lattanzi et al
(2000), Beyer et al (2000), Willoughby et al (2000), Trichter and Ennis (2001), Falco et al
(2001), Chandra et al (2001, 2003), Morr et al (2000, 2002), Héon et al (2002) and
Little et al (2003). Most of these studies reported on large numbers of patients and gave the
mean and standard deviation of motion in three orthogonal coordinate directions. However,
of much more importance is the general observation of outliers, occasions on which the
target was grossly mispositioned. There is some discussion of operator training, interoperator
comparisons and operator self-comparison. Interestingly, Van den Heuvel et al (2003) and
Langen et al (2003) find the BAT of no use for predicting the motion as assessed from implanted
markers.
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Figure 1. Cartoon schematic showing the several ways to measure the motion of a tumour (not
all at once as drawn!). Note the tumour (black circle in upper drawing) motion is drawn in a
different direction to the patient surface motion (black to green contour) to emphasize the need
to correlate internal and external motion if motion tracking is to be based on the use of external
markers. There could also be phase differences. Tumour motion can be measured directly by
x-rays, ultrasound and radio-emissions and indirectly by surface infrared markers (red circles).
Other gating techniques could rely on measurements of nasal temperature, abdominal pressure,
spirometry, ABC or visual or audio coaching.

Others have built their own equipment. Bouchet et al (2000) attached light-emitting
diodes to an ultrasound probe to record its in-room location for registration with 3D data.
Sawada et al (2002, 2004) have a CT scanner, ultrasound scanner and linac together in the
same room. At CT scanning, ultrasound measurements are also made and then, using further
ultrasound data recorded during treatment and correlated to the first set, the linac is gated if
the target drifts away from the expected location.

Artignan et al (2002, 2004) showed that the pressure applied by the ultrasound probe
actually displaced the prostate by 3 mm for every 1 cm of applied ‘pressure’. Conversely,
using MR images, McNeeley et al (2003) disputed this, finding only 1 mm prostate movement
due to transducer pressure.
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7. Magnetic monitoring of position

Seiler et al (2000) and Muench et al (2001) have implanted a wire-coupled position-sensitive
sensor into tumours and tracked its motion using an external magnetic field. The accuracy
was reported to be of the order 1–2 mm. Balter et al (2003, 2005) have described a wireless
localization system. One or more wireless transponders or beacons, glass encapsulated, are
implanted in the organ whose motion is to be tracked. A magnetic source and receiver coil
array then determines the transponder positions provided they are in a field of view of 14
by 14 cm2 and up to 27 cm away from the array. In turn, a set of infrared cameras in the
room views the array and the combination of determining the position of the array w.r.t. the
isocentre and the position of the beacons w.r.t. the array gives the position of the beacons w.r.t.
the isocentre. The system is known as Calypso. Experiments showed that the beacons can
be tracked with submillimetre accuracy both in air and also in saline solution simulating the
electrical conductivity of tissue. Moreover it has been demonstrated that there is no crosstalk
between the transponders. The advantages over a corresponding wired system are obvious
and, since the system makes no use of external x-radiation, there are also advantages claimed
over the use of implanted gold-seed markers.

8. Gating

Gating can, in principle, ensure that both the target is in the correct irradiation position and
also that the normal tissues are excluded from too much irradiation. The motion is tracked by
some signal that then instructs the accelerator to irradiate only when the target is in a limited
range of locations for which the planning has been performed. By definition the duty cycle is
less than unity and indeed, if the position were too tightly specified, would be close to zero
and impractical. Thus gating is a ‘coping strategy’.

8.1. Gating irradiation of oscillating phantoms

Kubo and Wang (2000) irradiated a static phantom. Then they irradiated the phantom on
an oscillating stage and showed degradation of the dose distribution. Finally they gated the
irradiation using pulses from a spirometer characterizing a real patient’s breathing. This third
dose distribution was close to that for the static irradiation. This study importantly showed that
the characteristics of the accelerator did not change with gating and also that this equivalence
was independent of energy, doserate and direction of motion gating. Hugo et al (2001, 2002)
did similarly with infrared photogrammetry gating. See also section 12.4.2. Dietrich et al
(2005) showed by experiment with moving phantoms and also by simulation that use of a
small (3 mm) gating window did not significantly disturb the dose distribution from its static
form and the increased treatment time was acceptable. With these phantom irradiation gating
experiments in mind we proceed to consider clinical implementation.

8.2. Gating based on optical measurement of surface markers

Solberg (2000) and Kini et al (2000) have gated therapy using the information from infrared
surface markers. Ramsey et al (2000) have gated lung therapy and Vedam et al (2001)
specifically showed that gating on exhale is more reproducible. Keall et al (2002) have
proposed 4D IMRT in which respiratory gating accommodates movement in the thorax.
Nelson et al (2005) have gated on voluntary deep-inspiration breath-hold using a patient-
viewable optical-marker-generated breathing trace. Berbeco et al (2005c) showed that two
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ways of gating based on external surrogate tumour markers did not greatly reduce residual
tumour motion during irradiation. Berbeco et al (2005b) instead used an EPID in cine mode.

8.3. Gating based on x-ray fluoroscopic markers

Shirato et al (2000a, 2000b, 2004a) used four sets of diagnostic x-ray television systems in the
treatment room to track the location of a 2 mm gold marker in prostate, lung and liver at
30 Hz. The treatment and diagnostic x-rays were never on together, arranged through
appropriate pulsing. The diagnostic procedure contributed 1% extra dose. The image data
were used to gate the linac, reducing the range of travel of tumour markers typically from some
3.8 cm to 5 mm. It was claimed this is more accurate than tracking surface markers which may
or may not correlate with deep-seated marker seeds and better than magnetic monitoring which
is invasive. Sharp et al (2003) claimed no need to use predictive techniques (see section 12.5).
Shirato et al (2004b) later pointed out that the technique of using continuous fluoroscopy can
lead to excessive unwanted dose and this is a motivation behind the quest for non-irradiation
techniques.

8.4. Gating based on respiration monitor

Jiang and Doppke (2001) used a spirometer to gate CT acquisition, reconstructing data at
three phases of breathing for breast planning, concluding breathing was not a major problem.
Giraud et al (2000) also used a spirometer to gate CT scans and proposed gating therapy
correspondingly. Zhang et al (2003) showed the long term drift in spirometer monitoring
and developed a calibration technique to overcome this. Van Herk et al (2002) used a nasal
thermometer to measure the breathing phase and gate CT data.

Butler et al (2004) conducted a study to determine whether more normal lung tissue was
excluded from high dose when treating a lung tumour if the radiation were gated. They studied
gating on deep-inspiration breath-hold (DIBH; generally 60% of vital capacity), or on 0%
(full expiration) and 100% (full inspiration) of tidal volume. This study created treatment
plans on the CT datasets at these breathing phases and analysed the dosimetry using dose–
mass histograms (DMH) rather than dose–volume histograms. This choice was made because
a DMH more realistically represents the number of tissue cells damaged (Nioutsikou et al
2005). Comparisons were made with plans created using free-breathing CT datasets. It was
found that gating at each of these positions reduced the dose to normal lung. A key parameter
studied was M20, being the mass of lung tissue receiving at least 20 Gy. Ratios of this
parameter for gated therapy compared with free-breathing therapy were created and found
to always be less than unity. However, for some patients, the ratio was very close to unity,
indicating little benefit from gating. Also there was no correlation between the gating benefit
and the tumour type or location meaning that, ahead of time, patients could not be pre-selected
for gating on any classification basis. Individual studies had to be performed.

8.5. Held breath self gating

Some studies have been based on asking a patient to hold their breath for a deep inspiration
breath-hold (DIBH) and the irradiation takes place only during this period. Mah et al (2000)
showed this locked the tumour position to the corresponding planning position to better than
2 mm for a large number of patients. Kim et al (2001) experimented with four different parts
of the breathing cycle for breath-hold. Mageras (2004) pointed out that 60% of patients at
MSKCC cannot comply with DIBH. Barnes et al (2001) presented an extraordinary range of
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breath-hold periods up to 52 s and Della Biancia et al (2003) showed improved normal lung
sparing at end inspiration compared with end expiration.

8.6. Gating based on density changes

Berbeco et al (2005a) have proposed that the fluoroscopically observed change in density of
lung can be used to gate to specific breathing phases.

8.7. 4D cone-beam CT/kVCT

Cone-beam kVCT has recently been established as an available tool on a radiotherapy linac,
the concept being that a kVCT scan recorded just before treatment can be compared with
the planning CT scan and adjustments made to compensate for mispositioning. Generally,
however, a kVCT scan takes typically tens of seconds to record and again tens of seconds
to reconstruct (although reconstruction can take place during the scanning period). Since
this scanning time is considerably longer than the breathing period the resulting kVCT scans
would be blurred if no further action were taken. Sonke et al (2005) have developed a method
to extract the breathing signal from each projection based on a measurement of the projected
position of the diaphragm. Then the projection data were re-sorted a-posteriori into just
eight phases of the breathing cycle and these subsets of data were used to make eight kVCT
scans which, viewed as a set, constitute a 4D kVCT reconstruction. Of course the signal-to-
noise ratio will deteriorate as a result of the fact that fewer projections now comprise each
reconstruction. However, it was found that signal-to-noise ratio did not deteriorate to the point
that the organs were unable to be identified. Careful experiments were made with a phantom
to show that the phase-re-sorted kVCT reconstructions did correspond well with the equivalent
kVCT reconstructions of static phantoms at the same breathing phase.

9. Robotic feedback

The Accuray Cyberknife is a robotically held linear accelerator capable of pointing in many
non-coplanar directions. Thus it is the ultimate in IMRT geometric capability although
presently, equipped with a circular small-field collimator, is too inefficient for most IMRT.
Its strength is its linked motion-compensation system. Infrared markers on the patient’s skin
are tracked in real time by a camera system. Every 10 s x-ray images are taken of implanted
markers. An algorithm links the two measurements such that a continuous measurement of the
external markers is converted into a pseudo-continuous measurement of the internal markers.
This latter can be fed back to the robot so that it can ‘track the breathing organs’ (Schweikard
and Adler 2000, Schweikard et al 2004) (see also section 5.3).

10. Active breathing control

Active breathing control was invented by Wong (2003) who modified a ventilator to enable
the patient to be coached to determine their tolerance to breath-hold. Once this is established,
an option is for the patient to view their breathing trace and the air is cut off for a fixed period
during which the target is immobilized and the irradiation takes place. Stromberg et al (2000)
showed that, with breathing controlled at deep inspiration (DI) when irradiating lung tumours,
the dose–mass histogram of normal lung was reduced significantly with use of the ABC device.
Similar results were recorded by Wilson et al (2001). Aznar et al (2000), Remouchamps
et al (2002, 2003) and Sixel et al (2001) showed that DI improved the sparing of heart in
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left-breast radiotherapy. The technique is also in use at the Royal Marsden NHS Foundation
Trust (Donovan et al 2002, 2003, McNair et al 2003, Christian et al 2003). Dawson et al
(2000) used the device to immobilize the liver.

11. Calculating the effect of tissue motion

11.1. Including the motion concept in treatment planning

Li and Xing (2000a, 2000b) proposed a method to incorporate the expected motion into
planning. If Df (n) is the dose to voxel n without taking account of motion and P(n, n′) is the
probability of finding voxel n at n′ then the dose really received by n is

D(n) =
∑

n′
P(n, n′)Df (n)

and so planning should minimize the function

(1/N)

N∑

n=1

rs[D(n) − D0(n)]2

where rs is the importance factor for structure s and N is the total number of dose calculation
points. Minimizing this function minimizes the difference between the prescription and the
motion-smoothed dose distribution. Xing et al (2000) showed that not doing this led to
degraded plans by comparison. An alternative proposed by Loof et al (2001) incorporated the
motion into the dose kernel used in inverse planning. Unkelbach and Oelfke (2003, 2004a,
2004b, 2005) have also developed a planning method that accounts for the probabilistic
dwelltime of a tumour evaluated from multiple CT scans.

11.2. Use of multiple CT datasets and adaptive IMRT

Several workers (e.g. Xu et al (2000), Bignardi et al (2000), Plasswilm et al (2002), Hoogeman
et al (2003) and Large et al (2001)) have shown that, if the plan created from a CT dataset on
day 1 were applied to CT datasets on subsequent days/weeks, the dose distribution would be
inappropriate. These detailed studies quantitated the errors and pointed to the need to correct
for inter-fraction variations in tissue geometry. Schaly et al (2004) actually tracked individual
voxels using sequential CT datasets to create composite dose distributions correctly averaged
over the fractions.

11.3. Composite target volumes

McShan et al (2001, 2002) and Fraass et al (2002) have developed the multiple instance
geometry approximation (MIGA) in which two or more instances of geometry are recorded
and the plan optimized for all instances concurrently. The plan is then worse than the ‘no
motion’ plan but better than this latter convolved with motion. Martinez et al (2001) have used
multiple CT scans in week 1 to tailor the PTV margin with confidence-limited anisotropic
margins from CTV instead of fixed margins. Pavel et al (2001) and Mechalakos et al (2002)
also studied the change in target geometry over the course of radiotherapy fractions.

11.4. Multiple CT scans and altered inverse planning

Bortfeld et al (2002c) determined the exact fraction number at which intervention should take
place when daily measurements of target location were available in order to correct for the
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systematic variation separately from the random effects. Typically the answer was about 4.
Wu et al (2002) conversely computed the summed dose to the nth fraction and then re-optimized
the (n + 1)th fraction accordingly.

11.5. Daily repositioning

X-ray CT in the treatment room allows the most direct way to reposition a patient each
day correctly as their planning CT scan (Kuriyama et al 2003, Paskalev et al 2003, 2004,
Dong et al 2004). Cone-beam kilovoltage CT is an alternative method to daily x-ray CT not
covered in detail in this review.

Court et al (2005) have devised a method to adjust the MLC shapes on a daily basis using
CT data acquired ahead of each treatment fraction. These data are compared with the planning
CT data and the MLC shapes are adjusted to (i) account for global rigid body translations in
the S-I direction and (ii) account for actual shape change of prostate and seminal vesicles due
to daily change in rectum and bladder status. They showed that, provided the MLC shapes are
so adjusted, the dosimetry to the PTV and OARs is considerably more faithful to the treatment
plan than if simply global couch position adjustments had been made. It is this latter method
which is the default use of pre-treatment kVCT data. The main improvement comes from the
consideration of the daily volume changes of targets and organs at risks.

12. Intrafraction motion modelling

12.1. 4D CT

Van Sörnsen de Koste et al (2003) created three fast and three slow CT scans for each lung
patient from which they deduced the optimum CTV as the envelope of the CTVs from each
of these six. They found that if the CTV from the slow breathing scan were expanded by
5 mm symmetrically to form a PTV this PTV was close to that envelope. Conversely CTVs
from the individual fast scans were too small. Allen et al (2004) also showed the relationship
between CTVs determined from free breathing scans and end-tidal scans. Keall (2004) and
Keall et al (2004b) gated a CT scanner with the signal from the RPM infrared system to create
CT scans at different phases of the breathing cycle. This is generally referred to as 4D CT.
Mageras (2001) and Mageras and Yorke (2004) used respiratory gating to create CT datasets at
8–10 phases of the breathing cycle and show movies of the breathing patient. Frazier et al
(2000, 2004) gated CT using the ABC device to create scans of the breast at normal inspiration
and normal expiration. These were used to show that dose distributions were fairly insensitive
to breast motion during normal respiration.

12.2. Single fraction delivery

It has now been well established that, if intensity-modulated beams computed on a static CT
scan are applied to a moving phantom or patient, the dose distribution will be severely degraded
(Holmberg et al 2000, Kung et al 2000, Zygmanski et al 2001, Ramsey et al 2001). Several
authors have shown this effect by delivering modulated fields to a phantom on a moving
platform (Sohn et al 2001) showing the dose distribution differed significantly from the effects
of convolving a static dose distribution with a motion kernel. This is entirely understandable
because convolution will only approximately reproduce the effects of motion if the average is
taken over all phases and individual experiments do not do that. Conversely, Schaefer et al
(2004) showed experimentally that the dose to points within the PTV did not deteriorate more
than 5% from the corresponding data for static irradiation even with a single-fraction (single
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phase) delivery. They thus expected their variation to be even less averaged over multiple
fractions.

12.3. Multiple fraction delivery

It has now been conclusively established that, if a modulated delivery is made over a course
of fractions, the central limit theorem will lead to the delivered dose being the same as the
convolution of the static dose distribution with the motion kernel. This is because, after a
fairly small number of fractions, the motion can be described by a Gaussian function whose
width decreases the more fractions occur (Bortfeld et al 2002a, 2002b, 2004, Chui et al
2003a, 2003b). This effect was also demonstrated experimentally with oscillating phantoms
(Jiang et al 2002, 2003c, Duan et al 2002). This result is entirely independent of the method
of IMRT delivery for reasons that are clear from the study by Webb (2005a).

Naqvi and D’Souza (2005) have developed a method to predict the effect of intrafraction
motion on dose distributions in phantoms. This is a Monte Carlo method that ray-traces
photons through the collimated segments for an IMRT delivery taking into account all the
physics of the delivery. Moreover the isocentre of the delivery is also randomly sampled
from a probability distribution. In this way the dose distribution is built up corresponding to
an infinite number of treatment fractions. To verify this method, an experimental oscillating
phantom was constructed which could be made to ‘breath’ according to a sinusoidal motion
of amplitude 2 cm and period 4 s. Film was sandwiched into appropriate phantoms for ten
separate occasions of IMRT delivery. These films were then digitized and converted to dose
and the digital matrices, appropriately registered, were then summed to give the experimental
measurement of the effect of motion sampled over ten fractions. It was shown that the
theoretical predictions and the experimental curves agreed very well and from this it was
not only concluded that the theoretical technique was successful but also that the interplay
effects between MLC delivery and breathing motion averaged out over a complete course of
radiotherapy. No conclusions could be drawn about the effect of a very limited number of
fractions. Also the experimental study was limited to rigid body motion and non-Lujan-like
breathing curves.

12.4. Modifying intensity modulated beams to account for motion

Deng et al (2001, 2002) have modelled the effect of incorporating motion into the leaf patterns
for IMRT. Gierga and Jiang (2002) and Gierga et al (2003) evaluated the effect of organ motion
by generating the leaf patterns that corresponded to a breathing lung tumour and, using Monte
Carlo calculations, worked out the dose distribution corresponding to 20 different phases of
leaf motion with respect to organ motion. When the average was taken, the result closely
resembled the treatment plan on the PTV. Gierga et al (2004) did the same for liver.

12.4.1. Voxel tracking and optimization. The most advanced way being considered to track
organ motion is as follows. 4D CT is performed to obtain 3D CT datasets at several (say 10)
phases of the breathing cycle. Voxels are then identified in each phase and are ‘tracked’ by
some connectivity algorithm. Examples proposed so far are optical flow solutions (Horn and
Schunk 1981, El Naqa et al 2004, Zhang et al 2004a, Guerrero et al 2004), viscous flow
solutions (Mageras et al 2004), finite element analysis (Brock et al 2004) and thinplate splines
(Bookstein 1989, Schaly et al (2005); Rietzel et al 2004, Hartkens et al 2002, Malsch et al
2004, Coselmon et al 2004) or B splines (Blackall et al 2004). Then one of several things can
be attempted. (i) Plans are optimized on each phase and added together with correct voxel
tracking (Jiang 2004) but then the overall plan may not be optimal, (ii) plans can be created
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on one phase and applied for analysis to another (Coolens et al 2004), (iii) a plan could be
optimized overall but which may not be optimal on some particular phase (not yet attempted).

Keall et al (2005) made 3D CT scans at eight phases of the breathing cycle for a lung
tumour patient to create a 4D CT dataset. Then morphing software was used to solve Navier
Stokes’ equations to transform contours made on the maximum-inhale scan to the other
seven phases. The developed transform then allowed the beam’s-eye-view of the PTV on the
maximum-inhale phase to also morph to a different shape on the other seven phases. Then just
one plan (i.e. one set of angles and weights) was made on the maximum-inhale phase and using
the morphing transformation these same angles and weights were applied to the other seven
phases to create in all eight dose distributions. Each plan was uniformly weighted because the
breathing phases were chosen to be uniformly occupied throughout the period of breathing.
This can be viewed as eight 3D plans or one 4D plan. Other work (Keall et al 2004a) computed
these plans using Monte Carlo techniques. Then the inverse of the transform was used to add
up all eight dose distributions and display them on the geometry of the maximum-inhale CT
dataset.

12.4.2. DMLC tracking. Keall et al (2001a, 2003) have discussed synchronizing the
breathing motion to the leaf motion in the dMLC technique and Keall et al (2001b) showed
that, when the tumour ‘breathed’ as a rigid body and the same motion was applied to the
leaves, the outcome was equivalent to irradiating the stationary tumour with the unmodified
dMLC technique. Suh et al (2003, 2004) also irradiated an oscillating phantom using beams
extracted from a patient plan with the leaves co-temporally tracking and showed that the
resulting dose distribution was similar to that irradiating the static phantom. The proposal was
to use ‘compelled breathing’ to try to maintain as regular a pattern as possible.

Keall et al (2004c) have studied whether a signal generated by an EPID measurement
of an internal tumour marker could be used to feedback organ motion to an MLC delivering
IMRT by the dMLC technique to take care of intrafraction motion. They implanted three
gold cylinders, 3 mm in length and 1 mm in diameter into a lung phantom which was placed
on a motion stage and set to oscillate sinusoidally with a period of 3 s and an amplitude of
4 cm. These extreme parameters were chosen to test the method in limiting conditions when
the maximum velocity of the marker reached 4 cm s−1. The EPID, normally acquiring an
image in about 1s, was set instead to acquire in 0.1 s. However, in doing so the interval
between acquisitions was still 1 s. Hence the EPID technology used by Keall et al (2004c)
prohibited the clinical implementation of the method. A second prohibition arises because
currently there is no known method to feedback motion knowledge to the (Varian) dMLC
controller. Although the decreased acquisition time and the motion both degrade the image
of the markers and lead to a reduction in signal-to-noise ratio from 18 to 6 compared with
conventional 1 s imaging of static markers, they were able to create a marker extraction
routine. In principle image extraction and feedback should allow the correction of the dMLC
technique for intrafraction motion within a few years from now. The alternative method of
using in-treatment-room dual-x-ray fluoroscopy has the advantages of better signal-to-noise
ratio, faster continuous imaging and 3D measurement as well as permitting gating (something
an EPID method cannot of course do). Conversely EPIDs are present on most accelerators
(unlike in-room fluoroscopy), do not give extra patient dose and show 2D motion orthogonal
to the beam which is the main source of dosimetric error, motion along the beam direction
contributing little to dosimetric error.

The optimum dMLC leaf velocity patterns in the absence of motion were worked out in
1994 by three groups. Papiez (2003, 2004) has shown that there is an infinity of suboptimal
solutions and worked out the corresponding solutions for targets in motion. The target executes
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a rigid motion and, starting with the statement that the same equations must hold in the target
frame of reference, the velocities of motion in this target frame were derived. The key
conclusion, and this is vital, is that now the leaf which goes at maximum speed is not entirely
defined by the gradient of the modulation. One or other leaf is always going at the maximum
allowed velocity in this target frame that at the same time does not violate the maximum
physical velocity in the lab frame. Transforms were made to obtain the velocity and position
equations back in the lab frame but for a moving target. Then the motion patterns were created
in which the leaves breath with the target. This construction is optimal in that the minimum
treatment time will arise.

Papiez and Rangaraj (2005) extended the analysis for elastic body motion and provided
the optimal solution in terms of minimal treatment time (see also Rangaraj and Papiez (2005)
and Papiez et al (2005)). Alternatively Webb (2005a) transformed the unbreathing leaf
trajectory plots and created a perfectly practical solution which is one of the suboptimal
ones. Papiez’ solutions did not address the issue of phase mismatch between organ motion
and leaf motion whereas Webb (2005a) concentrated on this aspect considerably. The
studies of both Webb (2005a) and Papiez (2003, 2004) and Papiez and Rangaraj (2005)
are solutions of the 1D leaf velocity problem whereby leaf-pairs can be considered separately.
The complication of change of density of tissue and change of density of interactions is
so far ignored in these complex mathematical studies but was addressed by Webb (2006a).
The solutions also only work for regular rhythmical motion although Papiez et al (2005)
have considered adapting to variable motion. None of these studies have yet considered
transmission, scatter, leaf end issues. D’Souza et al (2005) made experimental measurements
using a motion of the couch instead of the MLC whereby the couch motion mirrored that of
the patient. Webb (2005b) showed that inventing pseudo-profiles which when sampled by
motion would give the correctly required profiles does not work because of ill-conditioning
and the need for negative intensities.

Nill et al (2005) showed that kVCT systems either in-line with the MV beam or at right
angles to it can be used to track intrafraction organ motion at right angles to the detector.

12.5. Predicting the future

Any breathing-control method that uses either (i) gating, (ii) breathhold or (iii) full tracking
must be able to make adjustments to the treatment based on measurement at some time t1
(or series of times up to t1) that can give a measure of the target position at some future time
t2 > t1 with the collimation adjusted for t2 not t1. Hence some kind of computer prediction
of the future is required. Vedam et al (2004) have made measurements of diaphragmatic
breathing for a ‘signal history length (SHL)’ of between 1 s and 7 s, in intervals of 1 s and
predicted the future target position for a future time � between 0 s and 1.8 s (in intervals of
0.2 s). They developed two types of prediction algorithm, one based on fitting a sinusoid to the
SHL data and the other based on an adaptive filter. They then computed the expected position
of the target at some time interval � in the future and compared this with the actual position
to generate an error in position. For data of different lengths they then computed the standard
deviation of this error and plotted it as a function of the SHL and of �. This was done for
data (i) with the patient free breathing, (ii) with audio coaching and (iii) with visual coaching.
It was determined that for all cases (i) the computer predictions were better than making no
predictions, (ii) the adaptive filter worked best. It was also determined that (iii) the standard
deviation error could be kept to 2 mm provided a SHL of 5 s was used and prediction was no
further than � = 0.4 s into the future. Otherwise the error increased with increasing � and
with decreasing SHL. Jin and Yin (2005) have shown the measured time delay for a Varian
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linac-based gating system was 0.17 s. Kakar et al (2005) have used adaptive neuro fuzzy
inference (ANFIS) to predict future motion from observed motion. Webb (2006b) deduced
the dosimetric effect of latency.

13. Summary and conclusions

The present research position with respect to accounting for tissue motion is vibrant, active
and expanding. There is a mixture of quite disparate approaches. There are a few commercial
products but limited clinical implementation.
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